Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

نویسندگان

  • A K Haritash
  • C P Kaushik
چکیده

PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be enhanced by physical/chemical pretreatment of contaminated soil. Addition of biosurfactant-producing bacteria and light oils can increase the bioavailability of PAHs and metabolic potential of the bacterial community. The supplementation of contaminated soils with compost materials can also enhance biodegradation without long-term accumulation of extractable polar and more available intermediates. Wetlands, too, have found an application in PAH removal from wastewater. The intensive biological activities in such an ecosystem lead to a high rate of autotrophic and heterotrophic processes. Aquatic weeds Typha spp. and Scirpus lacustris have been used in horizontal-vertical macrophyte based wetlands to treat PAHs. An integrated approach of physical, chemical, and biological degradation may be adopted to get synergistically enhanced removal rates and to treat/remediate the contaminated sites in an ecologically favorable process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation of Polycyclic Aromatic Hydrocarbons by Aerobic Mixed Bacterial Culture Isolated from Hydrocarbon Polluted Soils

In this study, the degradation potential of five polycyclic aromatic hydrocarbons (PAHs) by aerobic mixed bacterial cultures was investigated. Microorganisms were isolated from hydrocarbon contaminated soils of Shadegan wetland located in southwest of Iran. The degradation experiments were conducted in liquid cultures. PAH or PAHs concentration was 100 mg/L at the beginning of degradation e...

متن کامل

Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils

Polycyclic aromatic hydrocarbons are a class of potentially hazardous chemicals of environmental and health concern. PAHs are one of the most prevalent groups of contaminants found in soil. Biodegradation of complex hydrocarbon usually requires the cooperation of more than single specie. In this research biotreatment of PAH (phenanthrene) was studied in a solid-phase reactor using indigenou...

متن کامل

Occurrence, Fate and Treatment Methods of Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, Dioxins and Furans: A Mini Review

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dioxins and furans are persistent organic pollutants with well-known toxicity and carcinogenic activity. These organic pollutants have the tendency to bioaccumulate, present little or no biodegradation and subsequently, could cause a menace to the ecosystems and human health. This review discusses the occurrence, fate an...

متن کامل

Surfactant-mediated Biodegradation of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promi...

متن کامل

Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques.

Polycyclic aromatic hydrocarbons (PAHs) are recognized as a worldwide environmental contamination problem because of their intrinsic chemical stability, high resistance to various transformation processes, and toxicity property. Because of the wide distribution of the PAHs in the environment, human exposure to the PAHs is likely to occur from dermal contact, ingestion of particles, inhalation o...

متن کامل

Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria.

Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is prompted by their ubiquitous distribution and their potentially deleterious effects on human health. PAHs constitute a large and diverse class of organic compounds and are generally described as molecules which consist of three or more fused aromatic rings in various structural configu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 169 1-3  شماره 

صفحات  -

تاریخ انتشار 2009